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NEUROSCIENCE

Event structure sculpts neural population dynamics  
in the lateral entorhinal cortex
Benjamin R. Kanter*, Christine M. Lykken, Ignacio Polti, May-Britt Moser, Edvard I. Moser* 

INTRODUCTION: Our experience of the world unfolds as a stream of 
events that can later be reconstructed from memory in rich detail. The 
hippocampal formation, which is critical for such episodic memories, 
has been shown to exhibit slow changes in neural activity over time, 
most prominently in the lateral entorhinal cortex (LEC). It remains to 
be determined whether and how this drift in neural activity contrib-
utes to the temporal organization of episodic memories.

RATIONALE: Experiences are segmented into discrete events across  
a range of timescales from seconds to minutes or more. Event 
boundaries (i.e., transitions between successive events, such as 
changes in location, social setting, or behavior) affect memory for 
the duration and order of events, which suggests that event 
structure could play an important role in shaping the neural activity 
underlying such memories. To search for the neural mechanisms 
that determine how events are segmented and organized in time, we 
used high-density Neuropixels probes to record neural activity from 
an unprecedented number of neurons in the LEC and neighboring 
brain areas in freely behaving rats, across multiple behaviors and 
behavioral states, and in the presence of variations in event 
structure at multiple timescales.

RESULTS: Neural population activity in the LEC drifted continu-
ously along a one-dimensional manifold during individual 
foraging sessions, such that activity traveled progressively 
farther away from the current state. Simultaneously recorded 
neural activity in the medial entorhinal cortex (MEC) and 
hippocampal area CA1 exhibited minimal drift. Recordings 
during natural sleep revealed that LEC population dynamics 
were nearly identical during rapid eye movement (REM) sleep 
and foraging, which suggests that drift does not require changes 
in external sensory information and instead is an inherent 
network phenomenon. During wakefulness, population 

dynamics abruptly shifted at event boundaries, leading to the 
segmentation of neural activity into discrete temporal units. 
During tasks with repeating temporal structure, the LEC 
simultaneously encoded event information across multiple 
timescales by traveling additionally in directions orthogonal to 
the drift. We uncovered potential mechanisms of both drifting 
and shifting dynamics in neural population activity. Drift could 
be explained by minute-scale variability in the firing rate of 
individual neurons broadly distributed throughout the LEC 
population. These slow variations were necessary and sufficient 
for drift at the population level. Shifts in population dynamics 
at event boundaries were driven by synchronous responses of 
neural ensembles in the LEC. Different ensembles responded at 
different event boundaries, such that individual events could be 
time-stamped in memory.

CONCLUSION: Drift of neural activity in the LEC is an inherent 
network phenomenon that continues at a constant rate during 
wakefulness and sleep but is briefly interrupted by abrupt shifts at 
moments of transition between events. These results identify a 
candidate mechanism for the segmentation of experience into 
discrete episodic memories, as reported in human study partici-
pants. Experience consists of a sequence of events across a wide 
range of timescales, organized hierarchically from seconds to 
minutes or more. We show that LEC activity simultaneously 
encodes event information across these different timescales 
without explicit reinforcement or extensive behavioral training. 
Together, our results identify a hierarchical neural coding scheme 
for organizing events in time. 
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Neural population activity in the LEC 
organizes events in time. Activity 
inherently drifts over time regardless of 
behavioral state (left). In the awake state, 
activity abruptly shifts to segment events 
(middle). Activity travels in additional 
directions orthogonal to the drift to 
simultaneously encode event information 
across multiple timescales (right). The LEC 
uses a hierarchical coding scheme for 
organizing events in time. [Art adapted 
from SciDraw (scidraw.io), CC-BY 4.0]
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Benjamin R. Kanter*, Christine M. Lykken, Ignacio Polti,  
May-Britt Moser, Edvard I. Moser* 

Our experience of the world is a continuous stream of events 
that must be segmented and organized at multiple timescales. 
The neural mechanisms underlying this process remain 
unknown. In this work, we simultaneously recorded hundreds to 
thousands of neurons in the lateral entorhinal cortex of freely 
behaving rats. Neural population activity drifted continuously 
along a one-dimensional manifold during all behaviors and 
behavioral states, including sleep, which points to an intrinsic 
origin of the drift. In awake animals, boundaries between events 
were associated with discrete shifts in population dynamics, 
which segmented the neural activity into temporal units. During 
tasks with recurring temporal structure, activity traveled 
additionally in directions orthogonal to the drift, encoding event 
information across multiple timescales. The results identify a 
hierarchical coding scheme for organizing events in time.

We experience the world as a continuous stream of events (1) occurring 
in a particular order at particular places and times. Episodic memory 
allows us to mentally revisit those experiences by recalling events in 
sequence (2). Although the hippocampus is critical for episodic mem-
ory (3, 4) and the spatial correlates of such memories have been well 
described (5, 6), much less is known about the neural mechanisms 
underlying their temporal organization (7). The passage of time is 
mirrored by slow drift in neural activity in the hippocampus (8–12) 
and one of its major cortical inputs, the lateral entorhinal cortex (LEC) 
(13, 14), but the contribution of this drift to the temporal organization 
of episodic memories has not been determined. It remains unknown 
whether the drift of neural population activity is steady and continu-
ous in time, whether it is determined by intrinsic network dynamics 
or reflects the structure of experience, and whether and how experi-
ence is simultaneously encoded at multiple timescales (15, 16).

One important clue is that experience is hierarchically segmented 
into discrete events across timescales from seconds to minutes or 
more (17). Event boundaries (i.e., transitions between successive 
events) are associated with abrupt changes in behavior, the environ-
ment, or physical location. Such boundaries affect memory for the 
duration and order of events (10, 17–21) and are accompanied by 
transient changes in hippocampal activity (10, 16, 21–24). To search 
for the neural mechanisms that determine how events are segmented 
and organized in time, we monitored the activity of large populations 
of neurons in rats during single episodes of experience. We focused 
on brain areas where neural activity is correlated with the passage 
of time (8, 9, 12, 13). We used high-density Neuropixels 2.0 silicon 
probes (25) to perform simultaneous extracellular recordings of 
>1000 neurons in the LEC, medial entorhinal cortex (MEC), and 
hippocampal area CA1 of freely behaving rats across multiple behav-
iors and behavioral states and in the presence of variations in event 
structure at multiple timescales.

Large-scale recordings show continuous drift in LEC 
population activity
To address whether drift in neural population activity in the LEC is 
continuous in time and how both intrinsic factors and the structure 
of the animal’s experience may shape those dynamics, we decided to 
first verify that the drift previously observed in data pooled across 
sessions and animals (13) is also expressed during individual events. 
To quantify population dynamics without averaging data over events, 
we used high-density Neuropixels silicon probes, which increased the 
yield of recorded neurons by an order of magnitude (Fig. 1A; mean 
single session yield across 9 rats = 772 LEC neurons; tables S1 and S2 
and figs. S1 to S3). Neural activity was recorded while rats engaged in 
a free foraging task (Materials and methods). We temporally binned 
the spiking activity of each LEC neuron to capture dynamics at the 
behavioral timescale of seconds to minutes (bin size = 10 s). To visual-
ize the neural population dynamics as trajectories through a state 
space of neural activity, we used dimensionality reduction [principal 
components analysis (PCA) and linear discriminant analysis (LDA)] 
(figs. S4 and S5 and Materials and methods). Population activity in the 
LEC drifted over the course of minutes like an “arrow of time,” such 
that the activity at any given time was most similar to the neighboring 
time points and became progressively more dissimilar over time 
(Fig. 1B, left, and figs. S5 and S6). There was little drift in the MEC and 
CA1 during the exact same experience (Fig. 1B, middle and right, and 
figs. S5 and S6). Note that we use the term drift as a description of the 
phenomenon, irrespective of any potential function.

Dimensionality reduction can cause distortions and be misleading 
when analysis is restricted to a specific projection of the data (26, 27). 
All of our analyses were therefore performed in the high-dimensional 
ambient space defined by the number of simultaneously recorded neu-
rons, unless explicitly stated otherwise. To quantify the drift in popula-
tion activity, we calculated the distance traveled (cosine distance 
ranging from 0 to 1) between all pairs of population vectors during 
the 10-min foraging session (Fig. 1C and fig. S5E). Distances in the LEC 
grew continuously as a function of the temporal lag between states, 
and activity drifted significantly farther over the course of the session 
in the LEC compared with the MEC and CA1 (Fig. 1, B to E, and fig. S6, 
A to D). Quantification of distance traveled was insensitive to the 
number of neurons sampled, and distances were consistently larger 
in the LEC compared with the MEC and CA1 in size-matched popula-
tions (fig. S6B). The regional differences were insensitive to the choice 
of temporal bin size (fig. S6C) or differences in the population firing 
rate changes between regions (fig. S4F). We also attempted to decode 
time within the foraging session based on activity from either the LEC, 
MEC, or CA1. We found that a k-nearest neighbors classifier (k = 10) 
was sufficient to decode time from LEC activity (ambient space) with 
significantly greater accuracy compared with the MEC and CA1 (Fig. 1F 
and fig. S6E; accuracy in all regions was above chance levels).

Drift of population activity is an inherent property of the LEC
Having established that LEC population activity drifts in the absence 
of scheduled events, we next investigated whether drift is propelled 
by changes in sensory inputs and behavior or is an inherent property 
of the LEC that persists regardless of these factors. To minimize the 
contribution of external sensory inputs and behavior, we recorded 
neural activity during natural sleep (Fig. 2A). Behavioral and neural 
data were used to segment sleep sessions post hoc into slow-wave sleep 
(SWS) and rapid eye movement (REM) sleep (Fig. 2B; fig. S7, A and B; 
and Materials and methods). Because SWS was dominated by frequent 
transitions between nearly silent DOWN states and short UP states (a 
few seconds or less; Fig. 2C and fig. S7C), we focused our analysis of 
drift instead on REM, where neural dynamics were continuous and 
exhibited firing rate characteristics more closely resembling wakeful-
ness (Fig. 2C and fig. S7D). We focused on longer REM segments with 
more potential to exhibit drift (>60 s) and matched these segments 
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Fig. 1. Large-scale recordings show continuous drift in LEC population activity. (A) Summary of experimental approach. Neuropixels 2.0 silicon probes were used to record 
large populations of neurons simultaneously in one to three brain areas. Rats performed behavioral tasks with different degrees of event structure. Population dynamics were 
quantified during individual experiences. [Art adapted from SciDraw (scidraw.io), CC-BY 4.0] (B) Visualization of neural trajectories (from rat 27285) during 10-min foraging 
session shows population drift in the LEC (left) that is largely absent in simultaneously recorded MEC (middle) and CA1 (right) populations. State space is defined by top two linear 
discriminants LD1 and LD2 using 1-min epochs as class labels (Materials and methods). Small dots represent 10-s time bins, and large dots represent average activity during 1-min 
epochs. Points are colored from light to dark to show time within the session. (C) Matrices showing distance traveled (ambient space) throughout the 10-min foraging session for  
all brain areas in an example session [top row; corresponding to trajectories in (B)] and averaged over all sessions (bottom row; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, 
respectively). Hatched lines along main diagonal indicate that within-epoch distances were excluded to avoid saturating the color scale and focus on between-epoch distances.  
(D) Distance traveled (ambient space) between first and last minutes for all sessions and all areas. Neighbor distances compare adjacent times in the LEC as a lower bound of 
distance traveled. LEC versus MEC: t(42) = 4.24; P = 1.19 × 10−4. LEC versus CA1: t(36) = 2.72; P = 0.01. MEC versus CA1: t(28) = −0.55; P = 0.59. LEC versus neighbor: t(50) = 3.86; 
P = 3.25 × 10−4. MEC versus neighbor: t(42) = −0.81; P = 0.43. CA1 versus neighbor: t(36) = −0.03; P = 0.98. Two-sample t test; n = 26, 18, and 12 sessions for LEC, MEC, and 
CA1, respectively. (E) Distance traveled (ambient space) as a function of temporal lag within the session for all sessions and all areas. Interaction effect between area and time: 
F(16, 424) = 4.2; P = 1.39 × 10−7, repeated measures analysis of variance (ANOVA). (F) Decoding accuracy for 1-min epochs within the session using a k-nearest neighbors 
classifier (ambient space). LEC versus MEC: t(42) = 5.31; P = 3.83 × 10−6. LEC versus CA1: t(36) = 4.41; P = 9.02 × 10−5. MEC versus CA1: t(28) = −0.32; P = 0.75. LEC versus 
shuffle: t(80) = 18.87; P = 3.37 × 10−31. MEC versus shuffle: t(72) = 8.00; P = 1.55 × 10−11. CA1 versus shuffle: t(66) = 8.30; P = 7.65 × 10−12. Two-sample t test; n = 26, 18, and  
12 sessions for LEC, MEC, and CA1, respectively. [(D) to (F)] Data are represented as individual foraging sessions and means ± SEMs. ***P < 0.001; *P < 0.05; ns, not significant.
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Fig. 2. Drift of population activity is an inherent property of the LEC. (A) Animals slept in a specially designed sleep box for several hours. [Art adapted from SciDraw (scidraw.
io), CC-BY 4.0] (B) Data were classified as REM or SWS based on the theta/delta ratio recorded on a probe in the MEC or CA1 (47) but not in the LEC, where theta is notably absent. 
Plots show time courses of three variables used for detecting REM and SWS (thresholds depicted with gray dashed lines) for an example 30-min sleep interval (from rat 29630; see 
fig. S7A for all animals). (Top) Running speed. (Middle) Head angular speed. (Bottom) Theta (5 to 10 Hz)/delta (1 to 4 Hz) ratio from local field potential. (C) Raster plots of LEC 
activity from example segments of REM (top) and SWS (bottom) from sleep session shown in (B). Note the presence of continuous activity during REM (as in wake; Fig. 1A and 
fig. S7D) compared with the frequent discontinuities in SWS owing to transitions between active UP states and silent DOWN states (fig. S7C). (D) Visualization of neural trajectories 
(from rat 29630) show LEC population drift during a 60-s REM segment (left) that is comparable to a matched 60-s foraging segment (right). Small dots represent 1-s time bins, 
and large dots represent average activity during 6-s epochs. Points are colored from light to dark to show time within the segment. (E) Matrices showing mean distance traveled 
(ambient space) throughout an example (top row) 60-s segment of REM (left) or foraging (right) over all segments (bottom row) for each state in the LEC. Example matrices in the top 
row correspond to trajectories in (D). Note the similar patterns of drift between states. Hatching as in Fig. 1C. (F) Summary data showing distance traveled (ambient space) in the 
LEC during each 60-s REM segment for all sleep sessions was not different from matched 60-s foraging segments from the same animals. REM versus foraging: U = 2681.00; P = 
0.28, Wilcoxon rank-sum test; n = 50 segments. (G) Summary data showing decoding accuracy (ambient space) in the LEC for each 60-s REM segment for all sleep sessions was 
not different from matched 60-s foraging segments from the same animals. REM versus foraging: U = 2698.50; P = 0.23, Wilcoxon rank-sum test; n = 50 segments. [(F) and (G)] 
Dots represent individual 60-s segments. Data are represented as means ± SEMs. ***P < 0.001; ns, not significant. Assumptions of parametric tests (i.e., normality, homogeneity of 
variance) were formally tested. When these assumptions were violated, alternative nonparametric tests or bootstrap resampling were used instead (Materials and methods).

D
ow

nloaded from
 https://w

w
w

.science.org at N
orw

egian U
niversity of Science &

 T
echnology - U

niversity of T
rondheim

 on June 27, 2025



Research Article

Science  26 June 2025 4 of 15

to equivalent periods in the wake state to directly quantify the similar-
ity between drift in REM sleep and foraging (fig. S7E and Materials 
and methods).

Neural trajectories in the LEC appeared similar during REM sleep 
and foraging, continuously evolving over time in both states (Fig. 2D). 
We quantified the drift in neural population activity by calculating the 
distance traveled (ambient space) between all time points during the 
60-s segments (Fig. 2E). Activity drifted progressively farther away 
from the current state at each time point regardless of behavioral state. 
The total distance traveled (ambient space) from beginning to end of 
each 60-s segment was not significantly different in REM compared 
with foraging (Fig. 2F and fig. S7F). Cumulative distance traveled in-
creased progressively during segments of both REM and foraging, with 

no difference between them (fig. S7G). Decoding accuracy (ambient 
space) of time within each REM segment was as high as that during 
foraging (Fig. 2G). Drift was also observed to some extent in the CA1 
and MEC during REM sleep (fig. S8).

Shifts in state space at event boundaries discretize experience
We next asked whether and how event boundaries modulate the inher-
ently generated drift. LEC neurons are known to encode stimuli, such 
as odors and objects, through time-locked changes in firing rate 
(28–30). At the population level, such abrupt changes in firing rate 
could evoke abrupt shifts in the state space of neural activity, which 
would be detectable as brief moments of acceleration then decelera-
tion of the neural trajectory (Fig. 3A). This would provide a simple 
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Fig. 3. Shifts in state space at event boundaries discretize experience. (A) Schematic illustrating the hypothesis that trajectories evolve at a constant speed within an event 
(top) and undergo discrete shifts at event boundaries (middle). Plotting the change in trajectory speed over time reveals a rapid acceleration then deceleration at the event 
boundary (bottom). (B) In the foraging task, entering the box was the only scheduled event boundary (top). Neural trajectories in the LEC decelerated after entering the box and 
then returned to a constant speed. Example trajectory (middle) with arrow indicating change in speed. Small dots represent 10-s time bins, and large dots represent average activity 
during 1-min epochs. Points are colored from light to dark to show time within the session. Mean change in trajectory speed (bottom) at each time point over all sessions with 
significant speed change at marked time point: W = 45.00; P = 9.18 × 10−4, Wilcoxon signed-rank test; n = 26 sessions. (C) In the figure-eight task, the reward on each trial (lap) 
was the only scheduled event boundary. Neural trajectories accelerated in the LEC during reward approach and then decelerated again on each trial. Data are displayed as in (B). 
Small dots represent 1-s time bins on each trial, and large dots represent average activity for that time bin over all trials. Points are colored from light to dark to show time within the 
trial. t(4) = 21.11; P = 2.98 × 10−5, one-sample t test; n = 5 sessions. (D) In the odor sequence task, there were two scheduled event boundaries per trial. Neural trajectories in the 
LEC decelerated after the treadmill turned on to start the trial. Neural trajectories accelerated in the LEC during reward approach and then decelerated again. Data are displayed as 
in (B). Small dots represent 1-s time bins on each trial, and large dots represent average activity for that time bin over all trials. Points are colored from light to dark to show time 
within the trial. Dashed arrow: t(4) = −3.09; P = 0.037. Solid arrow: t(4) = 5.39; P = 0.006, one-sample t test; n = 5 sessions. (E) In the novel objects task, the object explorations 
defined the event boundaries. Neural trajectories accelerated in the LEC at the first contact with each object. Data are displayed as in (B). Small dots represent 10-s time bins, and 
large dots represent average activity during 1-min epochs. Points are colored from light to dark to show time surrounding the first contact. t(22) = 2.22; P = 0.037, one-sample  
t test; n = 23 first contacts. [(B) to (E)] Similar results were obtained when down-sampling the population to have the same number of neurons across all brain areas (fig. S10): 
Foraging: W = 43.00; P = 7.65 × 10−4, Wilcoxon signed-rank test; n = 26 sessions. Odor sequence, dashed arrow: t(4) = −3.35; P = 0.029, one-sample t test; n = 5 sessions. Odor 
sequence, solid arrow: t(4) = 5.42; P = 0.006, one-sample t test; n = 5 sessions. Novel objects: t(22) = 2.10; P = 0.047, one-sample t test; n = 23 first contacts. Data are 
represented as means ± SEMs. Change in trajectory speed was calculated as the difference between cosine distance (ambient space) for neighboring time points and the previous 
two neighboring time points. Statistical tests compare the time point, indicated with a black arrow, with a zero-mean null distribution. ***P < 0.001; **P < 0.01; *P < 0.05.
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mechanism for ensembles of coactive neurons to time-stamp event 
boundaries as the sequence of events is encoded into memory.

We searched for signatures of event segmentation in the LEC by 
measuring the acceleration profiles of neural trajectories in tasks con-
taining different types of events over multiple timescales. In the forag-
ing task described above, there were no scheduled event boundaries 
except for the introduction of the animal to the arena (animals could 
not predict when the session would end because sessions were of vari-
able duration and truncated post hoc to 10 min for analysis purposes) 
(Fig. 3B). We found a deceleration of the trajectory during the first 
minutes of the session, consistent with a postboundary deceleration 
to baseline speed. Next, rats were trained to run self-paced laps around 
a figure-eight maze, motivated by a single reward at a constant location 
on each lap (Fig. 3C). Neural trajectories accelerated on each lap im-
mediately before the animal reached the reward, which was the one 
scheduled event boundary in the task, and then decelerated again. 
Finally, we used an odor sequence task (Fig. 3D) that was quite similar 
to the figure-eight task. The only relevant difference here is that the cen-
tral stem of the maze was a treadmill where the rat ran in place for 
10 s, thus creating an additional event boundary within each trial (other 
task features are described below). We observed multiple changes in 
trajectory acceleration aligned to the multiple event boundaries within 
each trial of this task: a deceleration after the treadmill turned on, an 
acceleration during reward approach, and a deceleration when reach-
ing the reward. Note how stable the trajectory speeds were within each 
event compared with the boundary-induced shifts.

To test whether the LEC is also sensitive to novel event boundaries, 
before learning, we scheduled event boundaries at times when neural 
trajectory speeds were known to be stable. Animals started by randomly 
foraging in an empty arena, as above, but every 7.5 min, an object that 
the animal had never seen before (a so-called novel object) was inserted 
at a pseudorandom location (Fig. 3E, top). We predicted that object ex-
ploration would elicit shifts in LEC activity owing to the coincident ac-
tivation of object-responsive neurons (28, 29). Indeed, times of object 
exploration caused higher firing rates in LEC neurons compared with a 
size-matched population of other time points during the same session 
[t(147) = 5.60; P = 1.04 × 10−7, paired Student’s t test; n = 148 time points]. 
Notably, the first exploration of each object was associated with accelera-
tion of the neural trajectory at the time of contact with the object 
(Fig. 3E), similar to the familiar event boundaries in the other tasks. 
Subsequent exploration of the same objects did not cause shifts (fig. S9A).

To avoid biasing our search for shifts to periods of object explora-
tion, we also performed an agnostic search of the whole experiment 
for any times where the network became suddenly active as putative 
times for shifts (Materials and methods). These onsets of synchronous 
activity were consistently associated with trajectory acceleration 
(fig. S9B). A large and significant fraction of these synchronous spike 
events corresponded to moments of object exploration (33 ± 8%; n = 
23 objects; Fisher’s exact test, P = 0.002). Similar results were obtained 
for agnostic searches across the trial-based tasks (figure-eight task: 
62 ± 8% near reward location; n = 5 sessions; Fisher’s exact test, P = 
1.14 × 10−6; odor sequence task: 81 ± 4% near reward locations or tread-
mill start; n = 10 sessions; Fisher’s exact test, P = 0.36, not significant 
due to animal spending 83% of time at these locations).

Event boundaries often coincide with changes in movement or 
arousal. The fact that later exploration of objects did not cause the 
same boundary-induced changes in neural activity as the first contacts 
(fig. S9A) suggests that such effects were likely not merely a result of 
changes in the animal’s movement. To further exclude this possibility, 
we performed three additional controls. First, when considering every 
time point in each session, there was no systematic relationship be-
tween changes in animal speed and changes in neural trajectory speed 
in any task (fig. S9C). Second, in the foraging and novel objects tasks, 
where changes in movement could vary independently of the task 
structure, we found no significant change in animal speed at the event 

boundaries (fig. S9D). Third, in the figure-eight and odor sequence tasks, 
where changes in movement were more rigidly controlled by the task 
structure, we found no evidence of trial-to-trial correlations between 
changes in animal speed and changes in neural trajectory speed at the 
event boundaries (fig. S9E). Instead, we observed acceleration of neu-
ral trajectories at event boundaries across a wide range of changes in 
running speed.

The observed dynamics are harder to dissociate from general 
arousal because event boundaries, by definition, draw the animal’s 
attention and will therefore be accompanied by activation of widely 
projecting neuromodulatory systems in the brainstem. Nevertheless, 
if changes in trajectory speed were caused exclusively by changes in 
the activity of such systems, the effects would likely not be specific 
to the LEC. We therefore repeated the analyses on MEC and CA1 data 
and found that although these regions exhibited changes in trajectory 
speed in some conditions (fig. S10), only in the LEC was the effect 
robust across all tasks. The regional differences were not due to the 
number of neurons sampled (see legends of Fig. 3 and fig. S10).

Multiple timescales are encoded through orthogonal 
coding dimensions
Event memories are structured at multiple timescales, from seconds 
to minutes or hours. We thus asked whether different timescales could 
be encoded simultaneously in the LEC. The trial-based tasks described 
above contain a hierarchy of timescales, with individual laps occurring 
over seconds and the behavioral session occurring over minutes. To 
determine whether the LEC contains representations matching each 
of these timescales during ongoing behavior, we trained rats in a re-
petitive lap-running task that causes repetitive neural trajectories in 
the LEC (13) (Fig. 4A and fig. S11, A and B). From the continuous be-
havior in this task, we extracted 6-s trials (fig. S11, A to C) leading up 
to the reward (i.e., not including the reward-induced event boundary 
shown in Fig. 3C). LEC activity followed similar trajectories during 
these 6 s on each lap (trial time; Fig. 4, B and E, and fig. S11, D, F to 
I, and L). The large population recordings enabled us to analyze indi-
vidual trials and compare the trajectories lap-by-lap. We directly quan-
tified alignment of the trajectories across trials by comparing distances 
(ambient space) between matched trial times (i.e., the same 1-s time 
bin across different trials) with distances between mismatched trial 
times. Distances between matched trial times were significantly 
smaller (Fig. 4C), which indicates that trajectories from different trials 
were aligned. Alignments were maintained between trajectories for 
different trial types (left- versus right-turn trials) (fig. S11I). We further 
confirmed that activity repeated across trials by accurately decoding 
trial time (ambient space) from held-out trials using a k-nearest neigh-
bors classifier (Fig. 4D).

This finding of repeating trajectories during repetitive behavior is 
quite the opposite of continuous drift. Thus, to determine whether the 
repetitive nature of the task also affected dynamics at slower time
scales, we zoomed out to the timescale of the behavioral session and 
asked whether drift over minutes was preserved. We performed the 
exact same analysis as in the foraging task to capture change over 
minutes while ignoring the lap-running behavior. Continuous drift 
was still observed (Fig. 4F and fig. S11, E and J to L) during the exact 
same behavioral session while repeating trajectories occurred at a 
faster timescale (Fig. 4E and fig. S11L). This suggests that drift and 
repeating trajectories toward learned event boundaries may evolve 
along independent dimensions in the state space of neural activity 
and that information about these two timescales is mixed within the 
activity of the same neural population (fig. S11, L to O).

To quantify whether neural activity traveled in orthogonal directions 
at these two timescales (trial time versus session time), we identified 
the coding dimensions separately using PCA/LDA (PCA followed by 
LDA). For each timescale, the analyses yielded a vector describing the 
dynamics of the exact same population of neurons. The angle between 
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Fig. 4. Diverse timescales are encoded in LEC activity using orthogonal coding dimensions. (A) In the figure-eight task, rats were trained to run self-paced laps to receive 
milk rewards at the top of the maze, returning down the arm of their choice. Trial times were defined post hoc as 6 s leading up to but excluding the reward. (B) Example neural 
trajectories in the LEC from light to dark points during individual trials show that these trajectories were aligned across trials. (C) At each trial time, distances (ambient space) 
in the LEC between matched trial times from other trials were smaller compared with mismatched times from other trials. Match versus mismatch: t(4) = 6.94; P = 0.002, 
paired t test; n = 5 sessions. (D) Decoding accuracy (ambient space) in the LEC for 1-s trial times using a k-nearest neighbors classifier trained on held-out trials. Actual versus 
shuffle: t(4) = −12.38; P = 2.45 × 10−4, paired t test; n = 5 sessions. (E) Trial-averaged neural trajectory for example session in the LEC, where small dots represent 1-s time 
bins on each trial, and large dots represent average activity for that time bin over all trials. Points are colored from light to dark to show time within the trial. (F) Ignoring trial 
structure and looking for drift as in the foraging task shows that repeating neural trajectories across trials in the LEC did not eliminate drift over the course of the session. 
Small dots represent 10-s time bins, and large dots represent average activity for 1-min epochs. Points are colored from light to dark to show time within the session. (G) The 
axes of travel during each trial versus during the entire session were approximately orthogonal. “Trial versus session” versus “within trial”: t(4) = 13.66; P = 1.66 × 10−4. “Trial 
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the two vectors was ~90° (orthogonal), significantly larger than the 
variability calculated within each coding dimension using a resam-
pling procedure (~15°; Fig. 4G and Materials and methods). In a com-
plementary approach, we applied PCA to the trial-based data (1-s bins) 
and asked whether any of the top principal components were well 
correlated to either trial time or session time. In some cases, there 
were strong correlations to both trial time and session time, such that 
we could visualize both coding dimensions in a single two-dimensional 
(2D) subspace defined by those principal components (Fig. 4H and 
fig. S11F), which are orthogonal by definition. Combining these two 
orthogonal coding dimensions yields a helical trajectory, where each 
coil of the helix represents the recurring activity for one trial, and the 
long axis of the helix represents continuous drift throughout the ses-
sion (Fig. 4H and fig. S11, F and L).

Real-world experiences, however, do not contain a single recurring 
event (e.g., one reward per trial), but rather consist of many different 
events across diverse timescales. To test whether LEC activity could 
evolve simultaneously along a larger number of trajectories, we used 
the odor sequence task described above, in which recurring hierarchi-
cally organized events spanned timescales of seconds to many minutes 
(Fig. 4I). Animals first ran in place on a treadmill for 10 s. Next, they 
ran one lap around the figure-eight maze, stopping to sample an odor-
ized cup of sand and dig for a buried chocolate reward. The odor 
changed on each lap such that the odors formed a sequence over five 
laps from odor A to odor E. Finally, they performed three sequence 
runs (i.e., 15 total trials) with a 5-min rest between runs.

At the short timescale of seconds, LEC activity exhibited repeating 
trajectories during each trial. LEC activity was more similar across 
trials for matched trial times (i.e., the same 1-s time bin across different 
trials) compared with mismatched trial times (fig. S12A). These trial-
based trajectories were similar to those in the figure-eight task above 
but extended for ~30 s (see example in Fig. 3D), which demonstrates 
that LEC activity can capture the fine temporal details of extended 
experience. Trajectories were also aligned (ambient space) across re-
peated periods on the treadmill in the absence of overt changes in the 
external environment (fig. S12B). Time on the treadmill could be ac-
curately decoded (ambient space) from held-out trials using a k-
nearest neighbors classifier (fig. S12C).

At the long timescale of minutes, LEC activity drifted, as in all tasks 
described above (fig. S12D). The activity evolved smoothly from one 
trial to the next along a linear trajectory during the first sequence 
run. After a 5-min rest, however, the activity reset near the starting 
point of the original trajectory and evolved along an approximately 
parallel trajectory during the second (and third) sequence run(s) 
(Fig. 4J). To quantify this relationship, we calculated the pairwise 
distance (ambient space) between all trials (Fig. 4K). The continuous 
drift caused larger distances between trials at increasing lags, with the 
exception that distances became closer together when the same trial 
type repeated (Fig. 4L), consistent with the notion of parallel (aligned) 
sequence trajectories. These sequences were much less apparent in 
the MEC and CA1 (fig. S12, E to G). Although odors likely contribute 

to distinct LEC activity for each trial type (30), the increase in distance 
with increasing lag suggests that odor responses alone are insuffi-
cient to create the temporally ordered sequential representation de-
scribed here.

Slow single-cell dynamics underlying drift
We next set out to identify mechanisms that might underly drift in 
LEC population activity. We previously found that a subset of LEC 
neurons exhibited monotonic changes in firing rate over the course of 
minutes (13). Although the variable time constants of these “ramping” 
neurons could conceivably drive population drift (31), in this study, 
we took a more general approach to quantify any pattern of firing rate 
variability over a timescale of minutes, matching the observed popula-
tion drift. To do so, we calculated the fano factor (i.e., variance over 
mean) of the smoothed firing rate (Gaussian width = 30 s) for each 
neuron. Activity traces for LEC neurons with high variability took a 
variety of forms, including ramping, multipeaked activity, and transi-
tions between sustained periods of (in)activity (Fig. 5A and figs. S13 
and S14). LEC neurons had significantly higher variability than MEC 
neurons (Fig. 5B), whereas CA1 neurons were intermediate, mirroring 
the differences in population drift shown above. Minute-scale dynam-
ics were not restricted to a defined subset of LEC neurons but rather 
were broadly distributed throughout the population (figs. S13 and S14). 
Moreover, different neurons were maximally active at different times 
during the session (fig. S14C). By subsampling neurons on the basis of 
their variability, we found that these slow dynamics in single neurons 
are both necessary and sufficient for population drift (Fig. 5, C and D; 
fig. S14D; and fig. S15). The slow single-cell dynamics themselves may 
be a result of asymmetric connectivity within the network, behavioral 
timescale synaptic plasticity (32), or slowly changing inputs.

Synchronous ensemble responses underlying shifts
We next searched for a mechanism underlying shifts at event boundar-
ies (13, 21) by examining the fraction of the population that responds 
at the boundary, the form of the responses, and whether the same 
neurons are active in the same pattern at each boundary. We character-
ized the responses of individual neurons on a trial-by-trial basis for 
each trial-based task. In the figure-eight task, 27% of neurons exhibited 
large increases or decreases in firing rate coincident with the shift in 
population activity as the rat approached the reward (Fig. 6A and 
fig. S16A). In terms of both the fraction of responding neurons and 
the magnitude of the rate changes, single-neuron responses were larg-
est at the time of the shift compared with all other time points (Fig. 6A, 
right). Similar results were obtained in the odor sequence task and 
the novel objects task, where ensembles of positively or negatively 
modulated neurons responded at the time of the population shift (i.e., 
reward approach or object contact) (Fig. 6, B and C, and fig. S16B). To 
determine whether distinct activity patterns are expressed at succes-
sive event boundaries (33), we calculated the trial-to-trial variability 
in firing rate for boundary-modulated neurons. We restricted our 
analysis to the figure-eight task, where each event boundary within a 

versus session” versus “within session”: t(4) = 20.29; P = 3.48 × 10−5. “Within trial” versus “within session”: t(4) = 0.51; P = 0.63. Paired t test; n = 5 sessions. (H) Same 
example session from (E) and (F) showing a single projection of trial data in the subspace defined by PC2 and PC3. The data are colored by either trial time (left) or session 
time (middle) to further validate that these different timescales are represented by orthogonal axes. Schematic (right) shows how activity can repeat across trials while 
simultaneously drifting in an orthogonal direction. (I) In the odor sequence task, rats were trained to run self-paced laps starting with a 10-s treadmill period, then retrieving a 
buried chocolate reward in an odorized cup of sand, and finally returning to the base of the maze for a small milk reward. Each lap constituted one trial. Five odors were 
presented on consecutive laps forming a sequence that was followed by a 5-min rest off of the maze. Each session contained three sequence runs, yielding a total of 
 15 laps. Schematic (right) shows hierarchy of timescales from a few seconds to many minutes. (J) Example session showing that sequence runs traced parallel neural 
trajectories through state space in the LEC, which could serve to link temporal contexts. Dots represent average activity for each trial. Points are colored from light to dark to 
show time within the session. Trial type and session time were approximately orthogonal. (K) Matrices showing distance traveled (ambient space) in the LEC between each of 
the 15 trials in an example session (left) and averaged over all sessions (right; n = 10 sessions). Note that drift continues throughout the session. Hatching as in Fig. 1C.  
(L) Distance traveled (ambient space) in the LEC as a function of lag in number of trials for all sessions. Main effect of lag: F(13, 117) = 17.18; P = 1.89 × 10−21, repeated 
measures ANOVA; n = 10 sessions. Arrows indicate local deviations (>1 SD) in residuals of a polynomial fit when the same trial type (odor) repeats and LEC activity states 
become closer together. [(C), (D), (G), and (L)] Data are represented as means ± SEMs. ***P < 0.001; **P < 0.01; ns, not significant.
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session is identical (i.e., same reward every lap). Boundary-modulated 
responses exhibited considerable variability across trials such that 
different cells responded at different event boundaries (Fig. 6, D and 
E, and fig. S16). These responses were significantly more variable 
across trials compared with responses in subsets of neurons that pre-
ferred times other than the shift (Fig. 6E). This suggests that although 
boundary-modulated neurons have similar activity on average across 
similar events (Fig. 6, A to C, and fig. S16, A and B), they also display 
enough trial-to-trial variability to assign a distinct time stamp to each 
individual event (Fig. 6D and fig. S16). In agreement with this notion 
of time-stamping, we could successfully decode individual events (tri-
als) using a k-nearest neighbors classifier on held-out time bins (ambi-
ent space; Fig. 6F and fig. S16, C, D, and F).

Discussion
Leveraging the power of high-density, multiarea unit recordings in 
freely behaving rats, we have shown how neural population dynamics 
in the LEC depend on both intrinsic factors and the structure of the 
animal’s experience. When experimental conditions were stable, neural 

population activity in the LEC drifted progressively along a nonperi-
odic 1D manifold, regardless of the animal’s current task or behavioral 
state. The fact that drift persisted during sleep, when external sensory 
inputs are minimal, points to an intrinsic origin of the changing popu-
lation activity. In the awake state, the continuity of the drift was fre-
quently interrupted by event boundaries—major transitions in the 
animal’s experience, such as encountering a reward or a novel object. 
These nonlinearities in the neural trajectory segment the stream of 
experience into discrete events, which can be stored and later recalled 
as individual units in time (7, 10, 24).

The combination of drifting and shifting dynamics was expressed 
most strongly in the LEC, though the regional differences were, in 
most cases, only quantitative. Neural trajectories in the LEC may shape 
activity in the CA1 and MEC—regions that are known to exhibit tem-
poral coding under certain conditions (8–12, 34, 35). The data are 
consistent with studies of the human hippocampus, in which sharp 
onset and offset responses at event boundaries (10, 16, 21–23) have 
been identified as a potential source of bias in future judgments of 
temporal order (21). The present large-scale recordings from animals 
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Fig. 5. Slow dynamics in individual neurons underlying population drift. (A) Activity traces for the four LEC neurons with highest (top) and lowest (bottom) levels of firing 
rate variability over a scale of minutes in the foraging task. Firing rates smoothed with 30-s (black) or 1-s (gray) Gaussian. (B) Minute-scale variability for each neuron in an 
example foraging session (left) and mean variability across neurons within each session (right) for each brain area. Variability over minutes quantified as log fano factor 
normalized to a homogeneous Poisson neuron such that 0 is same as Poisson. LEC versus MEC: t(42) = 3.79; P = 4.80 × 10−4. LEC versus CA1: t(36) = 1.36; P = 0.18. MEC 
versus CA1: t(28) = −1.89; P = 0.07. Two-sample t test; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, respectively. (C) Distance traveled (ambient space) was recalculated 
after subsampling from all cells within a session (control) or from a population that had the top 25% most variable cells removed (high fano removed). Removing the most 
variable neurons led to a significant decrease in distance traveled, indicating that slow dynamics in single cells are required for population drift. Main effect between control and 
high fano removed: F(1, 53) = 80.16; P = 0 (no bootstraps exceeded observed statistic), bootstrap repeated measures ANOVA; n = 26, 18, and 12 sessions for LEC, MEC, and CA1, 
respectively. (D) Distance traveled (ambient space) was recalculated after subsampling the top 25% most variable cells within a session (single session) or from those same 
neurons pooled across all sessions (pooled sessions). This pooling effectively destroys the true correlation structure of the network and averages away sensory inputs that are 
specific to each experience, yet the amount of drift was not reduced. Slow dynamics are therefore sufficient for drift, whereas distinct experiences and specific cell-to-cell 
correlation structures are not required. Main effect between single and pooled: F(1, 108) = 3.77; P = 0.19. Bootstrap two-way ANOVA; n = 26, 18, and 12 sessions for LEC, MEC, 
and CA1, respectively. [(B) to (D)] Data are represented as means ± SEMs. ***P < 0.001; ns, not significant.
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identify discontinuities in the progressive drift of neural activity in 
the LEC and hippocampus as a candidate mechanism for the segmen-
tation of experience into discrete episodic memories, as reported in 
human participants.

Our findings yield insight into the geometry of drift in neural state 
space. LEC population activity did not simply drift uniformly across 
the session. During tasks with repetitive temporal structure, activity 
also traveled (at a faster timescale) in directions orthogonal to the 
drift, enabling the system to encode temporal information about 
the task together with the slower changes reflecting session time. By 
traveling in independent directions for each behaviorally relevant 

timescale, the neural code in the LEC is thus inherently multiscale, 
with fast timescales nested inside slow timescales. Multiscale temporal 
coding has been studied extensively in other regions at the level of 
neural oscillations (36–38), but few studies have explored longer time
scales of seconds to minutes. Our findings show that activity can pro
gress along multiple timescales also under nonperiodic conditions. 
Individual LEC neurons were not obviously locked to a single preferred 
timescale but instead flexibly expressed multiple timescales of experi-
ence, potentially allowing any target neurons to continuously capture 
the temporal statistics of the task. This hierarchical coding scheme 
could facilitate our ability to deconstruct events into subevents (17) at 
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Fig. 6. Fast dynamics in individual neurons underlying shifts at event boundaries. (A) Example heatmap (left) of trial-averaged firing rate for all LEC neurons relative to 
reward in the figure-eight task. Sorting neurons by rate change at the time of population shift (relative to the preceding time bin) reveals both positively and negatively 
modulated neurons. Across all sessions, more neurons had their largest rate change at the time of the shift compared with all other trial times (top right). Horizontal line 
indicates the chance level of preferring each time bin. The absolute rate change was also highest for neurons that changed most at the time of the shift compared with all other 
times (bottom right). (B) Example heatmap (left) and summary data (right) showing LEC neurons modulated at the reward-related population shift in the odor sequence task. 
The initial peak on the left corresponds to the other population shift when the treadmill turns on. Conventions are as in (A). (C) Example heatmap (left) and summary data 
(right) showing LEC neurons modulated at the contact-related shift in the novel objects task. Conventions are as in (A). [(A) to (C)] Modulated neurons are defined as those with 
their largest absolute change in rate (relative to previous time bin) at the shift time (vertical lines). Chance level fractions (horizontal lines) were 17%, 4%, and 17% for 
figure-eight, odor sequence, and novel objects tasks, respectively, based on the number of time bins in each task. (D) Example data from figure-eight session showing that even 
after selecting for LEC neurons with trial-averaged increases in firing rate at the event boundary, this subset showed substantial trial-to-trial variability. Note the blue areas 
showing individual trials when these positively modulated neurons actually showed negative responses. The inset to the right highlights six example neurons for the first two 
trials with a population vector (PV) correlation of −0.11, demonstrating that LEC activity creates distinct time stamps for each trial. (E) Mean PV correlation between LEC 
responses at event boundaries during figure-eight trials for positively modulated neurons (pos), negatively modulated neurons (neg), and randomly chosen subsets (n = 25)  
of neurons that preferred times other than the shift (other). Pos versus neg: t(8) = 1.53; P = 0.17. Pos versus other: t(8) = −2.60; P = 0.03. Neg versus other: t(8) = −3.70;  
P = 6.01 × 10−3, two-sample t test; n = 5 sessions. (F) Distinct time stamps for each event enabled accurate decoding (ambient space) of trial number in the LEC using a 
k-nearest neighbors classifier trained on held-out data (trials). Decoding error is measured as the difference between actual and predicted trial number. Shuffle obtained by 
shuffling epoch labels. Actual versus shuffle: t(4) = −10.698; P = 3.90 × 10−4, paired t test; n = 5 sessions. [(A) to (C), (E), and (F)] Data are represented as means ± SEMs. 
***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant.
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timescales ranging from seconds to minutes or more and may be used 
to organize event information while it is stored in memory.

Finally, we identified candidate mechanisms underlying both con-
tinuous drift and abrupt shifts in LEC neural trajectories. Drift was 
associated with slow, minute-scale variability in the firing rates of 
individual neurons. Although a subset of these neurons displayed 
gradual ramping with different time constants (13, 31), most neurons 
had a variety of other forms of slow dynamics. The richness of these 
dynamics may reflect properties of the individual neurons or synaptic 
changes in the network (32). In contrast to the slow drift, the abrupt 
shifts in neural trajectories were associated with synchronous re-
sponses of groups of neurons at event boundaries. These synchronous 
responses may be elicited by external inputs targeting subsets of LEC 
neurons, reflecting the LEC’s position as a node of convergence for 
afferents from widespread cortical and subcortical regions (39, 40). 
They might also be induced by neuromodulatory arousal systems in 
the brainstem associated with novelty and prediction error (41–44). 
Regardless of whether the inputs are sensory or neuromodulatory, 
however, the combination of activated LEC cells was distinct at each 
event boundary, which suggests that the discretization of neural tra-
jectories in the LEC does not merely reflect nonspecific arousal. When 
read out by neural circuits downstream in the hippocampus, experi-
ences between the individually tagged boundaries may therefore be 
stored and retained as individual, orthogonalized episodic memories 
(33, 35, 45, 46). These units of memory may then form the basis for 
reconstructive estimates of duration and temporal order during recall 
of experience (7).

Materials and methods
Subjects
The data were collected from nine adult (~12- to 18-week-old) male 
Long Evans rats weighing ~400 to 500 g at time of implantation. The 
rats were group-housed with one to eight of their male littermates 
before surgery and were housed alone in a large two-story enriched 
metal cage (95 × 63 × 61 cm) thereafter. Rats were handled daily. They 
were kept on a 12-hours light–12-hours dark schedule, with strict con-
trol of humidity and temperature. All experiments were approved by 
the Norwegian Food Safety Authority (FOTS ID 18011) and performed 
in accordance with the Norwegian Animal Welfare Act and the 
European Convention for the Protection of Vertebrate Animals used 
for Experimental and Other Scientific Purposes.

Surgery and electrode implantation
Rats were implanted with Neuropixels 2.0 silicon probes targeting the 
LEC, MEC, and/or CA1. One rat (27284) had a Neuropixels 1.0 single-
shank probe implanted in the MEC. LEC probes were implanted 6.23 
to 7.00 mm posterior to bregma, 3.70 to 4.05 mm lateral of the mid-
line, at an angle of 20° in the coronal plane with the tip of the probe 
pointing laterally. Probes were lowered until one or more shanks met 
resistance at the ventral surface and were then retracted 100 µm, 
reaching a final depth 7.84 to 9.11 mm below the pial surface. MEC 
probes were implanted 100 µm anterior to the transverse sinus, 4.60 mm 
lateral of the midline, at an angle of 26° in the sagittal plane with the 
tip of the probe pointing anteriorly. Probes were lowered 5.50 mm 
below the pial surface. CA1 probes were implanted 3.80 mm posterior 
to bregma and 3.20 mm lateral of the midline. Probes were lowered 
6.00 to 6.19 mm below the pial surface. Table S1 reports the exact 
implant coordinates for each probe in each rat. The implant was se
cured with dental cement. A small stainless-steel screw was attached 
to the skull above the cerebellum and connected to the probe ground 
and external reference pads with insulated silver wire. See (25) for fur-
ther details of probe implantation. After surgery, rats were left to recover 
until resuming normal locomotor behavior, a minimum of 2 hours. 
Postoperative analgesics (meloxicam and buprenorphine) were ad-
ministered during recovery.

Recording procedures
The details of the Neuropixels hardware system and the procedures for 
freely moving recordings have been described previously (25, 47). In 
brief, electrophysiological signals were amplified with a gain of 80, fil-
tered 0.005 to 10 kHz, and digitized at 30 kHz by the probe’s on-board 
circuitry. The digitized signals were multiplexed by an implant-mounted 
headstage circuit board and were transmitted along a lightweight 5-m 
tether cable, made using twisted pair wiring. SpikeGLX software 
(https://billkarsh.github.io/SpikeGLX/) was used for data acquisition 
and configuring the probes. 3D motion capture (OptiTrack Flex 13 cam-
eras and Motive recording software) was used to track the rat’s head 
position and orientation by attaching a set of five retroreflective markers 
to the implant during recordings. The 3D marker positions were pro-
jected onto the horizontal plane to yield the rat’s 2D position and head 
direction. An Arduino microcontroller was used to generate digital 
pulses, which were sent to the Neuropixels acquisition system [via direct 
transistor-transistor logic (TTL) input] and the OptiTrack system [via 
infrared light-emitting diodes (LEDs)] to permit precise temporal align-
ment of the recorded data streams. To analyze the animal’s behavior in 
greater detail, an overhead Basler camera was also used for the natural 
sleep, odor sequence, and novel objects tasks described below. Movies 
were aligned to the neural and behavioral data post hoc using the same 
infrared LED pulses used for the OptiTrack system.

Behavioral procedures
Data were obtained from several recording sessions performed within 
the first week after recovery from surgery. Recordings were performed 
while the rats engaged in four behavioral paradigms (or sleep sessions) 
using multiple mazes/arenas and rooms. Many distal visual and auditory 
cues were available to the rat. During presurgical training and habitu-
ation, several of the rats were food-restricted through intermittent fast-
ing during which food was available ad libitum for four hours between 
12:00 and 17:30. During that training phase, behavioral procedures were 
done from 8:00 when the animals were maximally food motivated. Food 
restriction ceased a minimum of 24 hours before surgery.

Foraging task
Seven rats (26863, 26965, 26966, 27284, 27285, 27963, and 28003) 
foraged for randomly scattered food crumbs (corn puffs and vanilla 
cookies) in a square open-field arena with a diameter of 1, 1.5, or 2 m. 
The arena had dark blue or black wax/vinyl flooring and was enclosed 
by walls of height 50 cm. Large distal cues were available outside of 
the arena near the room walls. The arena was dimly lit by one or two 
lamps along the room wall. At the time of surgery, four rats (27284, 
27285, 27963, and 28003) were familiar with the environment and task 
(minimum four × 10 min sessions). Three rats (26863, 26965, and 
26966) were completely naïve to the arena, room, and task at the time 
of their first recording session (these three recordings are not ana-
lyzed). Recording sessions lasted between 12 and 142 min.

Natural sleep
Six rats (27284, 27285, 27963, 28003, 29629, and 29630) were recorded 
during natural sleep by placing them in a dedicated sleep box made 
of black acrylic (30 × 30-cm floor, 80 cm height). The floor contained 
a shallow flowerpot lined with several towels to make a nest and rats 
were habituated to the box over a minimum of four sessions before 
implantation. The box walls passed infrared light to enable tracking 
through the walls. Room lights were on and pink noise was played 
through the computer speakers at ~60 dB to mask background 
sounds. Sleep sessions were conducted at the end of the light phase 
(7:00 to 8:00) and lasted between 45 and 180 min.

Figure-eight task
Two rats (26965 and 26966) were trained to run laps around a figure-
eight maze, receiving one reward per lap. The maze was made of wood 
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with vinyl flooring and plastic lips (2 cm high) and was elevated 80 cm 
above the ground by metal table legs. After being placed at the base 
of the maze, rats ran down a 50 cm long (12 cm wide) central stem to 
the top of the maze which was a 50 × 50 cm square with a small reward 
port (polyurethane tubing leading to 15 ml conical tube cap) at the far 
end. After drinking a sweetened chocolate milk reward (2.5% sucrose 
in Oatly chocolate milk), the rat could run back along either return 
arm (12 cm wide) to reach the base of the central stem again. The maze 
was open to the room with many available distal cues. The room was 
dimly lit by two small lamps on the left room wall. Animals were 
prevented from running in the wrong direction using a tall plastic 
barrier during training. During training and testing, a large plastic 
door was also used at the top of the central stem to prevent backtrack-
ing. The door opened as the rat came down a return arm and closed 
again after the rat retrieved a reward. Animals were considered trained 
when performing ~20 trials per session for multiple days and were 
implanted shortly thereafter.

Odor sequence task
Two rats (27285 and 29630) were trained to run laps around the same 
figure-eight maze described above, with a few small modifications. A 
milk port was added at the base of the central stem. The central stem 
itself was a treadmill with a large front door to prevent the rat from 
leaving until the treadmill turned off. At the top of the maze, the rat 
was presented with an odorized cup of sand containing a buried choco-
late cookie crumb reward (ChocoLoops). Odors were 1 of 10 common 
household spices, thoroughly mixed in sand with the following con-
centrations: A = parsley, 1%; B = cumin, 0.5%; C = paprika, 1%; D = 
thyme, 1%; E = cardamom, 0.8%; L = clove, 0.5%; M = tarragon, 1%; 
N = cinnamon, 0.8%; Ø = dill, 1%; P = coffee, 1%. For rat 29630, two 
changes were made: odor C was cinnamon (0.8%) and odor N was basil 
(1%). A custom GUI written in MATLAB was used to control the tread-
mill, door, and milk delivery. Each trial began when the rat reached 
the end of the treadmill, which triggered the treadmill to turn on at 
30 cm/s for 10 s. After 10 s, the treadmill turned off, and the large front 
door opened so the rat could run to the sand cup to dig for a reward. 
The rat then ran via either return arm to receive a sweetened chocolate 
milk reward (2.5% sucrose in Oatly chocolate milk) at the base of the 
central stem, before entering the treadmill again to initiate another 
trial. On each trial the odor in the sand was different, creating a se-
quence of five odors A through E across five trials. Sand and odors 
from the previous trial were removed with a handheld vacuum during 
the 10 s treadmill run, after which the sand cup for the next trial was 
put in position. This ensured that the rat could not smell the upcoming 
odor or chocolate treat until after leaving the treadmill. These five 
trials comprised a run, and the rat ran three runs with 5 min rest in 
a towel-covered flowerpot between each run, and also before and after 
the runs: rest, RUN1, rest, RUN2, rest, RUN3, rest. The rat ran this 
sequence (SEQ1) in the morning, and after a 2-hours delay in the home 
cage, returned to run a second sequence (SEQ2) in the afternoon. The 
only difference between morning and afternoon is that SEQ2 contained 
five different odors L through P. Data from the two different sequences 
were treated equivalently for analysis purposes. Shaping to dig and 
run laps took several days. Training on the full task with both se-
quences occurred over several days and surgery was conducted after 
training day 3. Recordings lasted ~30 min for each sequence.

Novel objects task
Four rats (27963, 28003, 29629, and 29630) foraged for randomly scat-
tered food crumbs (corn puffs and vanilla cookies) in a square open-
field arena, exactly as in the foraging task described above. After 7.5 min 
of foraging in the empty arena, a novel object was placed at a pseudo
random location on the floor of the arena. Objects had footprints of 
~10 × 10 cm and were ~15 cm tall. They consisted of common labora-
tory or household items (e.g., beaker, flask, spray bottle, candlestick). 

7.5 min later that object was removed and another novel object was 
placed at different pseudorandom location. This was repeated once 
more 7.5 min later resulting in the following sequence: Empty, OBJ1, 
OBJ2, OBJ3. Recordings therefore lasted 30 min. At the time of 
surgery, the rats had never experienced objects in the arena before. 
Two rats (27963 and 28003) were familiar with the foraging task 
(minimum four × 10 min sessions) from presurgical habituation, 
whereas the others had no prior experience in the foraging task. The 
experiment was repeated for each rat to maximize the number of 
novel object contacts (number of sessions and contacts reported in 
table S2).

Spike sorting and unit selection
Spike sorting was performed with KiloSort 2.5 with customizations as 
previously described (47). Units were discarded if >2% of their inter-
spike interval distribution consisted of intervals <2 ms. In addition, 
units were excluded if they had a mean spike rate of <0.05 Hz or >40 Hz 
(calculated across the full recording duration), or if they were recorded 
on sites outside the region of interest. LEC recordings included units 
from both superficial and deep cell layers (figs. S1 to S3). No attempt 
was made to segregate principal cells from interneurons.

Preprocessing and temporal binning
Data were not filtered for running speed. Spikes were binned using 
0.01- to 10-s time bins, depending on the timescale of interest for each 
task, and tracking data were resampled at the same time intervals to 
align them with the spike data. Bin size is indicated in the figures and 
their legends. Spike count vectors for each neuron were “soft” normal-
ized (48) to reduce the impact of strong responses by dividing the 
counts by the range of counts +5, where 5 is the normalization factor. 
Analyses therefore capture variance in neural responses more than 
their absolute firing rates. Spike time matrices for each region con-
sisted of all units that met the selection criteria above.

Neural populations were not pooled across recording sessions. By 
restricting the analysis to populations of simultaneously recorded 
neurons, we avoided potential spurious results caused by mixing re-
cording sessions of neural activity in different functional modes. The 
one exception to this rule is the analysis presented in Fig. 5D which 
shows that pooling neurons across recording sessions does not elimi-
nate drift at the (pseudo)population level.

Sleep stage classification
Sleep stages were identified as described previously (47). Periods of 
sustained immobility (lasting >120 s; locomotion speed, <1 cm/s; 
head angular speed, <0.1 rad/s) were classified into SWS and REM 
based on the theta (5 to 10 Hz)/delta (1 to 4 Hz) ratio of MEC or CA1 
population activity (theta is notably absent in the LEC). Periods when the 
theta/delta ratio remained above 1.0 for at least 20 s were classified 
as REM, whereas periods when the theta/delta ratio remained below 
0.8 for at least 20 s were classified as SWS (see fig. S7A for sleep stage 
classifications in all animals).

UP or DOWN state classification during SWS
To classify SWS activity between active UP states and quiescent DOWN 
states, the spiking activity of each LEC neuron during sleep was first 
binned at 25-ms resolution. LEC population firing rate was calculated 
in each bin for each segment of SWS (defined above in Sleep Stage 
Classification). A threshold was set at the 10th percentile of the popula-
tion firing rate distribution. Periods lasting at least 125 ms with popu-
lation rate above the threshold were classified as UP states, whereas 
those below the threshold were classified as DOWN states.

Matched data to compare drift between states
REM segments showed extensive variability in total duration, with sev-
eral of them lasting either <10 s or >60 s (fig. S7E). To robustly quantify 

D
ow

nloaded from
 https://w

w
w

.science.org at N
orw

egian U
niversity of Science &

 T
echnology - U

niversity of T
rondheim

 on June 27, 2025



Research Article

Science  26 June 2025 12 of 15

drift and evaluate its similarity to wake states, REM segments lasting 
a minimum of 72 s were sampled from all animals. We then randomly 
sampled 60 s from these longer REM periods, excluding the first and 
last 6 s to avoid potential contamination from other states due to 
imperfect sleep stage classification. These segments of exactly 60 s 
were binned at 1-s resolution. For each REM segment included in the 
dataset, an equally long segment was randomly sampled from a forag-
ing session of the same animal and binned at 1-s resolution. As done 
for the REM data, the beginning and end of the foraging session (first 
2 min or last 1 min) were excluded to avoid variability due to the event 
boundary effects shown in Fig. 3B.

For each matched REM and foraging segment, several measures 
were quantified to compare drift. Distance traveled (Fig. 2, E and F; fig. 
S7G; and fig. S8, A, B, F, and G), decoding of temporal epochs (Fig. 2G 
and fig. S8C), and tangling of neural trajectories (fig. S7H and fig. S8H) 
were calculated following the exact same procedures described above. 
The only difference was the temporal bin sizes decreasing by a factor 
of 10 due to the short durations (1-s bins, 6-s epochs, 60-s segment 
duration). Additionally, the same 60-s REM and foraging segments 
were binned at 2-s, 500-ms, and 100-ms resolution to show that the 
similarity in distance traveled between states was insensitive to these 
choices of bin size (fig. S7F and fig. S8E).

Definition of trial data from continuous behavior
Trials in the figure-eight task were defined post hoc from continuous 
lap running behavior. Trials were aligned based on the x-y position 
of the rats (from head-mounted markers) just before stopping to 
consume the reward. This point was calculated by finding the mode 
of the distribution of all y-position values throughout the session 
when the rat was within a defined x-position range capturing the 
central stem. It was confirmed by manual inspection that this cor-
responded to the location of reward consumption. The trial align-
ment point was then defined as 3 cm below that location to ensure 
exclusion of reward consumption itself in some analyses. For analysis 
of shifts in state space (Fig. 3 and figs. S9 and S10), trials were defined 
from 3 s before the alignment point to 4 s after (including reward). 
For analysis of within-trial time (Fig. 4 and fig. S11), trials were de-
fined as the 6-s periods leading up to the alignment point (exclud-
ing reward).

Trials in the odor sequence task were defined based on logged time 
stamps of the treadmill turning on. Each trial started when the tread-
mill turned on and ended either when the treadmill turned on for the 
next trial, or when it was the final lap of the sequence run, after con-
suming the reward at the top of the maze (thus the final laps were 
shorter than the rest). For comparing activity across trials, trials were 
truncated to the fastest full lap. For observing the full dynamics 
in Fig. 4J and fig. S12E, all times during sequence runs and intertrial 
intervals were included.

There were not trials in the novel objects task, yet neural and be
havioral data were aligned to moments of object contact/exploration. 
Contact was defined as the tracked position of the head being within 
a 10-cm radius of the center of an object. Note that because objects 
had footprints of ~10 × 10 cm, and the tracked position of the head 
was centered on their skull, the 10-cm radius effectively ensured the 
animal was in contact with the object [e.g., (10-cm radius) − (5 cm 
of object) − (3 cm from head to nose) = ~2 cm distance]. These 
contacts were further validated in video recordings and involved 
whisking, nose poking, rearing onto the object, and occasionally 
climbing onto the object.

Distance traveled and change in trajectory speed
Distance traveled was defined as the cosine distance (using the SciPy 
or MATLAB function pdist) between population vectors in the ambient 
space (dimensionality equal to the number of simultaneously recorded 
neurons). Values range between 0 (identical vectors) and 1 (orthogonal 

vectors). Cosine distance is a common metric used in high-dimensional 
data where data are most often concentrated near the perimeter in-
stead of the origin. Preliminary data exploration using other metrics 
yielded qualitatively similar results. For comparisons between tempo-
ral epochs consisting of multiple time bins, distance was calculated as 
the mean pairwise distance between the epochs.

Change in trajectory speed (acceleration or deceleration) was de-
fined as the second derivative of distances between population vectors 
for neighboring time bins. Agnostic search for event boundaries was 
done by calculating the instantaneous change in trajectory speed 
throughout the whole recording session. Putative times for discrete 
shifts in state space were defined as those when the population firing 
rate exceeded the 90th percentile and the increase in population firing 
rate from the previous time bin also exceeded the 90th percentile 
(different choices of threshold yielded similar results). The increase 
compared with the previous time bin was important for capturing 
changes in activity as opposed to continuous periods of elevated activ-
ity. The reason for focusing further on times when population firing 
rate was high was to avoid times when the network was simply recov-
ering to baseline after brief moments of reduced activity, which were 
regularly observed in LEC activity. Change in trajectory speed at those 
onsets of synchronous activity were compared with all other times in 
the recording session.

Neural trajectory alignment
Neural trajectory alignment was used to assess whether matched trial 
data were closer together in state space compared with mismatched 
trial data.

Matched distances were defined as the mean pairwise cosine dis-
tance (ambient space) between time bins with matched temporal ep-
ochs across different trials (e.g., the first 1-s time bin of each trial in 
the figure-eight task). Mismatched distances were calculated in the 
same manner but for time bins with mismatched temporal epochs 
across different trials (e.g., the first 1-s time bin of trial 1 compared 
with the fourth 1-s bin of trial 2). The magnitude of the difference 
between these values was rather small because mismatched distances 
included comparisons of neighboring temporal epochs where dis-
tances are expected to be small.

Decoding of temporal epochs
Decoding of temporal epochs was done in the ambient space of re-
corded neurons. Data were split into five cross-validation folds using 
the sci-kit learn function KFold. For decoding time within a session or 
trial number, time bins were shuffled before splitting into folds so that 
training data consisted of time bins from several temporal epochs. For 
decoding time within a trial or trial type, data were split into five folds 
based on trials such that entire trials were held out of the training 
data. The decoder used was KNeighborsClassifier from sci-kit learn 
with the following parameters: n_neighbors = 10, weights = “distance,” 
metric = “cosine.” Temporal epochs were predicted for each time bin 
using the sci-kit learn function cross_val_predict. Decoding accuracy 
was defined as the percentage of correctly predicted epochs, averaged 
over the five folds, using the sci-kit learn function accuracy_score. 
Decoding error was defined as the mean difference in time between 
predicted and actual epochs.

Dimensionality reduction
Dimensionality reduction was used only for visualizing neural trajec-
tories, quantifying tangling of trajectories, and calculating the offset 
between coding dimensions. Distances between neural states (see 
above) were always calculated in the ambient space to avoid potential 
distortions in lower dimensional embeddings.

PCA was run on the soft normalized spike × time matrices for each 
region using the sci-kit learn function PCA. LDA was used to find di-
mensions capturing change over time using the sci-kit learn function 
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LinearDiscriminantAnalysis. Principal components explaining 50% 
of the variance were used as input to LDA and class labels were defined 
as temporal epochs (foraging = 1 min, sleep = 6 s, figure-eight = 1 s, 
odor sequence trial time = 1 s, odor sequence full dynamics = trial/
intertrial number, novel objects = 1 min).

Note that these LDA projections only reveal differences between 
temporal epochs when neural activity is actually distinct during each 
temporal epoch. Shuffling the class labels provides one control for 
artifacts specific to the LDA projection.

Tangling of neural trajectories
Tangling of neural trajectories was calculated in the 2D space of the 
top two linear discriminants following PCA/LDA as described above. 
Tangling was defined as in (49)

where xt is the population vector at time t, ẋt is the temporal derivative 
of the neural state, ‖⋅‖ is the Euclidean norm, and ε is a small constant 
that prevents division by zero. Note that values of Q are inversely 
proportional to the neural state distances. When comparing smaller 
temporal intervals, distances are expected to be smaller and therefore 
tangling values would be larger.

Angular offset between coding dimensions
The angular offset between coding dimensions (e.g., session or trial 
time; Fig. 4G) was defined by running PCA/LDA, as described above, 
for each coding dimension (CD) separately. The PC with the largest 
contribution to the top LD was identified and its PC loadings were ex-
tracted. The same procedure was done for the other CD. Angular offset 
was defined as

The probability that any pair of vectors is orthogonal increases in 
higher dimensions. To avoid spurious claims of orthogonality, a leave-
one-out resampling procedure was used to quantify the stability of 
each CD over time. For session time, loadings were recalculated after 
leaving out one temporal epoch. This was repeated for each temporal 
epoch. Within CD stability was defined as the median angular offset 
between each of the resampled vectors and the original vector. For 
trial time, loadings were recalculated after leaving out one trial. This 
was repeated for each trial. Within CD stability was again defined as 
the median angular offset between each of these resampled vectors 
and the original vector.

The angular offset approach was well-suited to identifying the best 
CD vector for each timescale, yet it required two separate sources of 
input data (full session data with 10-s bins versus trial-based data with 
1-s bins). A complementary approach allowed us to observe the or-
thogonal CDs in a single common subspace (Fig. 4H and fig. S11F). 
PCA was run on the trial-based data with 1-s bins. Each of the top PCs 
were then examined to check for strong correlations with either trial 
time or session time. When such correlations were present, we could 
visualize both coding dimensions in a single 2D subspace defined by 
those PCs, which are orthogonal by definition.

Multiplexing of coding dimensions in individual neurons
Multiplexing of coding dimensions (e.g., session or trial time) was de-
fined by running PCA/LDA, as described above, for each coding dimen-
sion (CD) separately. The PC with the largest contribution to the top LD 
was identified and its absolute PC loadings were extracted. The same 
procedure was done for the other CD. These loadings were plotted 
against each other for visualization and neurons exceeding the 75% 
percentile of both distributions of loadings were considered as potential 
multiplexing neurons (i.e., displaying mixed selectivity) (fig. S11M). 

Neurons at the extreme ends of both distributions of loadings were 
further visualized as a proof of principle that multiplexing of these time
scales is possible (fig. S11, N and O).

Minute-scale variability in neural firing rates
Individual neuron spike trains during 10-min foraging sessions were 
binned in 0.5-s bins and then smoothed with a Gaussian of width σ = 
30 s. The fano factor of this smoothed firing rate vector was defined as

To compare these values with a known reference, synthetic spike 
trains were sampled from a homogeneous Poisson process and fano 
factors were calculated on these synthetic Poisson neurons in the 
same manner. Log normalized fano factor values reported in Fig. 5B 
were obtained by dividing the fano factor of each real neuron by the 
mean fano factor of 500 synthetic Poisson neurons, and then taking 
the log of this value. Based on this normalization, a value of 0 indi-
cates the same amount of variability as observed in Poisson neurons.

Note that the fano factor is not a proxy of a neuron’s time constant. 
For estimation of time constants, see below.

Estimation of time constants in individual neurons
Two methods were used to estimate time constants in individual neu-
rons (fig. S14, A and B). For both methods, individual neuron spike 
trains during 10-min foraging sessions were binned in 0.5-s bins. The 
large bin size was used to focus on neural dynamics at the behavioral 
timescale of seconds to minutes.

The first method (fig. S14A) fit these unsmoothed, binned spike 
counts with a Poisson generalized linear model (MATLAB function 
glmfit). The model contained two predictors: (i) a linear function of 
elapsed time during the session and (ii) mean population firing rate 
over time of all simultaneously recorded neurons. Neurons signifi-
cantly modulated (P < 0.05) by elapsed time were subsequently fit 
with a single-term exponential model, f(x) = aebx, where f(x) is the 
firing rate, a and b are constant coefficients, and 1/b is the time con-
stant. This method captures the overall time course of neural activity 
for neurons with simple exponential ramping profiles.

The second method (fig. S14B) calculated the autocorrelation of the 
unsmoothed, binned spike counts. The autocorrelation function was 
truncated to include only positive lags and then normalized by divid-
ing by the maximum correlation value. A single-term exponential 
model with the same form as above was fit to the early decay portion 
of the autocorrelation function from 1 to 90 s (other ranges produced 
similar results), and the resulting time constant was extracted. This 
method captures the timescale of neural activity changes more gener-
ally and is agnostic to the overall time course.

Correlation structure
Pairwise correlations were calculated as the Pearson correlation be-
tween all pairs of smoothed firing rate vectors during individual 
10-min foraging sessions (as defined in previous section). Pairwise 
correlations were also explored at finer temporal resolutions (1-s, 
500-ms, and 100-ms bin sizes) and differences between brain areas 
were less pronounced. The notable differences between brain areas 
occurred at the behavioral timescale of minutes, which was the focus 
of this study.

Breaking correlation structure (fig. S15B) was done by circularly 
shifting unsmoothed firing rate vectors for simultaneously recorded 
neurons relative to each other. Each neuron was shifted in time in-
dependently by a random interval between −2 min and 2 min. The 
first and last 2 min of the spike × time matrix was then truncated to 
eliminate edge effects from the shifting procedure, and distance trav-
eled during the remaining 6 min of the foraging session was calcu-
lated as above.

Q(t) = max
t�

‖
‖ẋt− ẋt�

‖
‖

2

‖
‖
xt−xt�

‖
‖

2
+ ε
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(
|
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|
|
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Drift in synthetic networks
Synthetic spike trains (n = 500 units) were sampled from a homoge-
neous Poisson process, as described above. Each synthetic unit was 
then duplicated such that one copy was smoothed with a Gaussian of 
width σ = 30 s (slow) and the other copy was smoothed with a Gaussian 
of width σ = 1 s (fast). Example units are shown in fig. S15C. Neural 
trajectories and distance traveled over 10 min were calculated for slow 
and fast populations separately (fig. S15, D and E) using the same 
methods described above. This procedure was repeated for a total of 
25 simulations, the results of which are individually displayed in 
fig. S15E.

Event boundary responses in individual neurons
The preferred time for each neuron in trial-based tasks was defined 
as the time bin with the largest absolute change in trial-averaged 
firing rate relative to the preceding time bin. The fraction of neurons 
preferring each time bin was calculated as the number of neurons 
preferring each bin divided by the total number of simultaneously 
recorded neurons (i.e., calculated per session). The absolute rate 
change was calculated as the mean absolute change in trial-averaged 
firing relative to the preceding time bin, calculated over all time bins, 
for all simultaneously recorded neurons. These measures all focus 
on trial-averaged responses and are presented in Fig. 6, A to C, and 
fig. S16, A and B.

Time-stamping of individual events was assessed by calculating the 
mean population vector correlation across all figure-eight trials for 
different subsets of simultaneously recorded neurons. Positively modu-
lated neurons were defined as neurons with preferred times (defined 
in previous paragraph) at the event boundary that had a trial-averaged 
increase in firing rate at that time relative to the preceding time bin. 
Negatively modulated neurons were defined in the same manner for 
neurons with decreases in firing rate. Control populations were de-
fined as random samples of 25 simultaneously recorded neurons, and 
mean population vector correlations were averaged over 50 random 
samples. Decoding of trial identity was performed as described above 
using all simultaneously recorded neurons. Decoding error was de-
fined as the mean difference in trial number between predicted and 
actual epochs. These measures all focus on variability between trials 
and are presented in Fig. 6, D to F, and fig. S16, C to F.

Histology and recording locations
Rats were deeply anesthetized with isofluorane, given an overdose of 
sodium pentobarbital, and perfused intracardially with saline followed 
by 4% formaldehyde. The extracted brains were stored in formalde-
hyde and a cryostat was used to cut 30-μm sagittal sections, which 
were then Nissl-stained with cresyl violet. The probe shank traces were 
identified in photomicrographs, and a map of the probe shank was 
aligned to the histology by using the tip of the probe shank as a refer-
ence point. The recorded area of the probe was near-parallel to the 
cutting plane; therefore, it was deemed sufficient to perform a flat 2D 
alignment in a single section. The aligned shank map was then used 
to calculate the anatomical locations of individual recording sites 
(figs. S1 to S3).

Data analysis and statistics
Data analyses were performed with custom-written scripts in Python 
3.10 and MATLAB 2023a (MathWorks). Open-source Python packages 
used were: NumPy, SciPy, sci-kit learn, and pandas. Statistical analysis 
was performed in MATLAB or Python. Power analysis was not used to 
determine sample sizes. The study did not involve any experimental 
subject groups; therefore, random allocation and experimenter blind-
ing did not apply and were not performed. Error is reported as stan-
dard error of the mean. Sample sizes are reported in the Results 
section. Assumptions of parametric tests (i.e., normality, homogeneity 
of variance) were formally tested. When these assumptions were 

violated, alternative nonparametric tests or bootstrap resampling pro-
cedures were used instead.
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